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Abstract
The effects on the magnetization of fluctuating Cooper pairs created above
the superconducting transition by thermal agitation energy (the so-called
fluctuation-induced diamagnetism, FD) have been measured in a clean type I
superconductor (Pb) and in a clean low Ginzburg–Landau parameter (κ) type II
superconductor (Nb). These experiments extend the earlier measurements of
Gollub, Beasley and Tinkham to both the high reduced temperature region
(ε ≡ ln(T/TC0) � 0.1) and the high reduced magnetic field region (h ≡
H/HC2(0) � 0.1). Our data show that in spite of FD being deeply affected in
both superconductors by the presence of non-local electrodynamic effects, the
superconducting fluctuations sharply vanish when ε or h become of the order
of 0.5 and, respectively, 1. This short-wavelength behaviour at high reduced
temperatures of the superconducting fluctuations is similar to that previously
observed at high reduced temperatures in dirty low-TC superconductors and
in high-TC cuprates, where the non-local effects are unobservable. These
last results suggest that in the short wavelength regime the superconducting
fluctuations in clean low-TC superconductors are still dominated by the
uncertainty principle, which imposes a limit to the shrinkage, when ε increases,
of the superconducting wavefunction. This may also be the case when h → 1,
although the presence of strong non-local effects in these clean and low-κ
superconductors may also deeply affect their high field behaviour.
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1. Introduction

At high reduced temperatures, when ε ≡ ln(T/TC0) � 0.1, or at high reduced magnetic
fields, when h ≡ H/HC2(0) � 0.1, thermal fluctuations are deeply affected by the
so-called short-wavelength effects, which appear when the characteristic wavelength of the
fluctuations becomes of the order of ξ0, the actual or Pippard superconducting coherence length
at T = 0 K [1, 2]. In these expressions, TC0 is the superconducting transition temperature at
zero applied magnetic field (H ) and HC2(0) is the upper critical magnetic field amplitude. The
behaviour of the superconducting fluctuations in the short wavelength regime is a long standing
but still open problem, whose interest has been considerably enhanced by the discovery of high
temperature cuprate superconductors (HTSC) [2, 3].

Recent experiments on these fluctuation effects at high reduced temperatures (ε � 0.1)
on the electrical conductivity (the so-called paraconductivity, �σ ) and on the magnetization
(the so-called excess magnetization, �M), suggest that the behaviour of the short-wavelength
fluctuations is dominated by the uncertainty principle, which imposes a limit on the shrinkage
of the superconducting wavefunction when ε increases [3–5]. These measurements were
mainly done in HTSC and in dirty low-TC superconductors, with high or moderate values of
the Ginzburg–Landau parameter, κ ≡ λ/ξ , where λ is the magnetic field penetration length
and ξ is the superconducting coherence length. Only a few preliminary data were obtained
in the high-ε region in low-κ type I or type II superconductors and, in all cases, in the low
reduced magnetic field regime, for h � 0.2 [3]. Let us already stress here that as suggested
earlier in the pioneering measurements of the fluctuation-induced diamagnetism (FD) of Gollub
and co-workers in the low-ε region [1, 2, 6], the superconducting fluctuations in clean low-
TC superconductors may be deeply affected by non-local electrodynamic effects. This is in
contrast with the dirty low temperature superconductors (LTSC) and the clean HTSC, with
moderate or high κ values, where non-local effects are unobservable [5, 7].

The first aim of this paper is to present detailed FD measurements in a type I superconductor
(Pb) and in a low-κ type II superconductor (Nb) in all the ε and h regions above TC0. As
noted before, the FD in these clean low-κ superconductors is appreciably affected for all
experimentally accessible ε and h by non-local effects [1, 2, 6]. So, the first question we will
experimentally address here is whether the FD in the high-ε region will be still dominated, even
in the presence of important non-local effects, by the Heisenberg localization energy associated
with the shrinkage, at high reduced temperatures, of the superconducting wavefunction. In
addition, we will extend these FD experiments to the high reduced field regime. We will see here
that these last measurements suggest that the FD effects also vanish (at all temperatures) when
h ≈ 1. Here we will then argue that this striking result may still be understood at a qualitative
level in terms of the limitations imposed by the indetermination principle to the shrinkage of
the superconducting wavefunction when h increases. However, the non-local effects may also
severely suppress the fluctuations when h → 1 in these clean and low-κ superconductors.
Although these non-local electrodynamic effects have been studied theoretically by different
authors [1, 2, 8, 9], to the best of our knowledge, at present, a unified approach allowing a
quantitative analysis of these effects at high reduced temperatures does not exist. So, we will
compare our experimental results with the Gaussian–Ginzburg–Landau(GGL) approach under
different cutoff conditions [3–5], that takes into account the short wavelength effects on the
conventional mean-field-like description without non-local effects.

2. Experimental details

The samples used in these experiments were a commercial Nb single crystal (Goodfellow,
99.99% purity) and a Pb polycrystal (Goodfellow, 99.9999%) in the form of cylinders of
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Figure 1. (a) Some examples of the magnetization versus magnetic field of the Nb single crystal,
obtained at various constant temperatures below TC0. The open symbols were obtained by
increasing the external magnetic field, while the closed ones by decreasing it. The arrows indicate
the upper critical magnetic field for each temperature. (b) M(H )T curves for T = 5 K before and
after a chemical polishing of the crystal surfaces. After the surface treatment, the irreversibility
is reduced to 50% its original value. This indicates that the pinning is mainly due to surface
irregularities instead of inhomogeneities in the bulk.

∼0.7 cm in height and ∼0.6 cm in diameter. The magnetic measurements were performed with
a commercial SQUID magnetometer (Quantum Design, model MPMS). For magnetic fields
below µ0H = 1 T, in our experiments, the resolution in magnetic moment is 10−11 A m−2.
This resolution, together with the relatively large size of the sample, allowed us to measure
the FD well inside the short-wavelength region (where �M/H � 10−7 in SI units).

In order to check the samples’ homogeneity and to obtain some superconducting
parameters involved in the study of fluctuations (in particular the critical temperature and
coherence length amplitude) we have performed measurements on the magnetization versus
magnetic field for various temperatures below TC0. Some examples of these measurements
are shown in figures 1(a) and 2(a). The open symbols were obtained by increasing the external
magnetic field, and the closed ones by decreasing it. The arrows indicate the critical magnetic
field HC(T ) in the case of Pb, and the upper critical magnetic field HC2(T ) in the case of Nb.
These last data are represented as a function of T in figure 2(b). As may be clearly seen, the
temperature dependence is practically linear in the range studied. This allows us to linearly
extrapolate to high and low temperatures. From the extrapolation to high temperatures we
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determined the corresponding zero-field critical temperatures, TC0. This leads to TC0 = 7.20
and 9.25 K for, respectively, the Pb and the Nb samples studied in this work. On the other hand,
the extrapolation to T = 0 K leads to µ0 HC2(0) = 0.54 T for Nb and µ0 HC(0) = 0.14 T
for Pb. In the case of type II Nb, by using the standard relation µ0 HC2(0) = φ0/2πξ2(0),
we determined ξ(0) = 250 Å. These critical temperatures, magnetic fields and coherence
lengths are in agreement with the values that may be found in the literature [6, 10]. In the
case of the type I Pb, the coherence length amplitude was estimated through the expression
φ0/2πξ2(0) = √

2κ HC(0). By using the κ value of [10] (∼0.3) we obtained ξ(0) = 680 Å.
Let us stress that the excellent structural and stoichiometric quality of the samples is

compatible with the non-reversible behaviour of the magnetization observed in figures 1(a)
and 2(a). In fact, as is now well established [11], in good quality (soft) samples the irreversibility
is mainly due to pinning by the surface irregularities and not to inhomogeneities in the bulk. In
order to check this we smoothed the original Nb crystal (which showed a rugosity characterized
by an angle of ∼3◦) by immersing it for a few seconds in a solution of nitric and fluorhidric acids
(in a proportion of 1:2). An example of the measured M(H ) behaviour in the Nb crystal after
this surface treatment is presented in figure 1(b). As can be seen in this figure, the irreversibility
was reduced by more than 50%, whereas the properties depending on the bulk quality, like the
critical temperature or the coherence length amplitude, remained unchanged. Furthermore,
we checked that the FD, which mainly depends on these bulk parameters, also remained
unchanged. We have also checked in other samples (Pb–In alloys) that �M above TC0 does
not vary within the experimental uncertainties after the electrolytic deposition on the sample
surface of a film of Cu, which suppresses the surface superconductivity existing up to HC3 in
the uncoated sample. In other words, these results indicate that the surface superconductivity
between HC2(T ) and HC3(T ) does not affect the measured FD above TC(H ). This last result
confirms and extends to high ε and h, early conclusions of Gollub and co-workers [6].

3. Experimental results

Two examples, each one corresponding to the Pb and Nb samples, of the as-measured magnetic
susceptibility versus temperature obtained with constant applied magnetic fields, M(T )H /H ,
are shown in figure 3. These data were obtained with external magnetic fields of 5 mT for
the Pb crystal and 40 mT for the Nb, which correspond to similar reduced magnetic fields,
h ≡ H/[φ0/2πµ0ξ

2(0)] ≈ 0.07. The lines in these figures are the normal-state or background
contribution, MB(T )H /H , which were obtained by a linear fit to the magnetic susceptibility
measured between ∼2.5TC0 and ∼4TC0, a temperature region where fluctuation effects are
expected to be negligible. Let us remark that in the temperature range from ∼2TC0 up to the
highest studied temperatures (∼5TC0), the data do not present any appreciable deviation from
the linear behaviour. Moreover the M(T )H/H slope is very small (<10−9 K−1 for Nb and
<10−8 K−1 for Pb). These last results indicate, therefore, that the so-determined background
magnetizations are very well defined, and that the corresponding excess diamagnetisms are not
affected by the choice of the background fitting region, provided that the lower temperature
limit of this background region is above ∼2.5TC0.

Some examples of the excess magnetization around TC0, defined as �M(T )H ≡ M(T )H −
MB (T )H , normalized by their corresponding H amplitudes, are presented in figures 4(a)
and (b). These curves already illustrate, at a qualitative level, some of the aspects that we are
studying in this paper. Note first that these curves are strongly affected by the magnetic fields:
even for the lowest fields used, which correspond to reduced fields of the order of h = 10−3, the
curves for different values of H do not agree with each other, at least at any temperature where
the FD effects are perceptible. As for these low values of h, the conventional (or Prange) finite
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Figure 2. (a) Some examples of the magnetization versus magnetic field of the Pb single crystal,
obtained at various constant temperatures below TC0. The open symbols were obtained by
increasing the external magnetic field, while the closed ones by decreasing it. The arrows indicate
the upper critical magnetic field for each temperature. (b) Temperature dependence of the Nb upper
critical field, HC2, and Pb critical field, HC . The corresponding HC2 (T → 0 K) and HC(T → 0 K)

values, as well as the critical temperatures, TC0, were obtained through linear extrapolation.

field effects are expected to be negligible (see next section and also [1–6]). This result already
suggests that the FD in these low-κ compounds is deeply affected by non-local electrodynamic
effects that will manifest, even at these low-h values, by reducing the FD amplitude well below
its value in the zero field limit. Such a behaviour is well illustrated by the results presented in
figure 5, where �M/H is represented as a function of h. These data have been normalized to the
theoretical value in the so-called zero-magnetic field (or Schmidt and Schmid) limit (this limit
will be detailed in the next section). As can be seen in this figure, the results for both the Nb
and the Pb samples are well below this theoretical limit, even for the lowest h. In addition,
mainly in the case of the Nb sample where we have obtained FD data at very low h values,
�M(h)ε/H always decreases when h increases. Such an h dependence of the normalized FD
also manifests in the Pb sample when h � 0.1 (which corresponds to h/ε � 1.7). Below this
h value, we do not have enough data to make any conclusions, although our present results
suggest a saturation of the finite field effects at very low h in the case of the Pb compound. For
comparison, in this figure we have also represented the data we had previously obtained for a
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Figure 3. An example for each sample of the as-measured magnetic susceptibility against
temperature at constant applied magnetic fields. The data shown were obtained with similar reduced
magnetic fields, h ≈ 0.07. The lines are the normal-state or background contributions. They were
obtained by linear fit to the magnetic susceptibility measured between ∼2.5TC0 and ∼4TC0, a
temperature region where fluctuation effects are expected to be negligible. T B

low represents the
lower limit of the background fitting region, and T C0 the temperature at which the fluctuations
vanish at low magnetic fields (h � 0.1).

dirty Pb–18 at.% In (PbIn18%) alloy, with a much bigger Ginzburg–Landau parameter [5]. As
can be seen in figure 5, this dirty alloy is much less affected by the non-local electrodynamic
effects: not only is the corresponding �M(h)ε/H independent of h when h/ε < 1, but also in
this regime the corresponding amplitude agrees with the theoretical one for the zero-field limit.
In spite of these important differences, we may also see in figure 5 that for the three compounds
the excess diamagnetism becomes non-measurable for reduced fields near h = 1. We will
argue in the next section that this FD suppression can be understood in terms of the limits
imposed by the uncertainty principle to the shrinkage of the superconducting wavefunction
when h increases [3].

The data of figures 4(a) and (b) also suggest that the FD amplitude vanishes in both
compounds at a well defined temperature, T C0, which is h independent up to h � 0.2: T C0

is of the order of 15 K for Nb and 12 K for Pb. This conclusion is clearly confirmed by the
data of figures 6(a) and (b), where −�M/H T is represented as a function of ε in a double-
logarithmic scale. In both compounds, the FD vanishes at a similar reduced temperature,
which is of the order of εC0 ≡ ln(T C0/TC0) ≈ 0.5. This value of εC0 agrees, well within
the experimental uncertainties, with the εC0 values we have measured previously in other
low-TC and high-TC compounds, with moderate or high κ values, much less affected by
non-local electrodynamic effects [3–5]. This conclusion is illustrated in figure 7, where we
compare different �M(ε)h/H T curves for the Nb and the Pb samples studied here, with the
data obtained before [5] in a dirty PbIn18% compound. To make the comparison between
the results for the three different compounds easier, the data in this figure are divided by the
corresponding theoretical FD values at ε = 10−2 (see next section). The non-zero �M showed
by some data points above ε ≈ 0.6 in figures 6 and 7 may be attributed to experimental noise
that becomes relevant at very low magnetization amplitudes. Despite the fact that the Pb–In
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Figure 4. Some examples for (a) Nb and (b) Pb of the fluctuation-induced magnetization versus
temperature curves normalized to their corresponding magnetic field amplitudes. The arrows
indicate the corresponding zero-field critical temperatures, TC0, and the temperatures, T C0, at
which the fluctuation effects at low fields (h � 0.1) vanish.

alloy is not appreciably affected by non-local electrodynamic effects, its corresponding FD
also vanishes for ε � 0.5. These results suggest, therefore, that even in the presence of non-
local effects the high reduced temperature behaviour of the superconducting fluctuations in
low-κ superconductors are still dominated by the limit imposed by the uncertainty principle
to the shrinkage of the superconducting wavefunction when ε increases. This conclusion will
be also examined at a quantitative level in the next section.

4. Comparison with the extended GGL approach

4.1. Theoretical background: extension of the GGL FD to the short wavelength regime

To analyse the experimental data summarized in the previous section, we will use the FD
expressions calculated in [4] and [5] on the grounds of the mean-field GGL approach regularized
through a so-called ‘total energy’ cutoff,which extends its applicability to the short-wavelength
fluctuation regime. These previous calculations were centred on the high-ε region, up to εC0.
The physical meaning of the total-energy cutoff was analysed in terms of the uncertainty
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Figure 5. Magnetic field dependence of the fluctuation-induced magnetization (over H ) at a
constant reduced temperature for the Nb and Pb samples. These data are normalized to the
theoretical GL value in the zero-field limit. The lines are the result of the GGL approach in
the finite-field (or Prange) regime under different cutoff conditions. The important amplitude
differences with the theoretical zero field limit are due to non-local electrodynamic effects. For
comparison, also shown are some data from [5] corresponding to a higher-κ superconducting alloy
(Pb–18 at.% In). These latter data extend up to h ≈ 0.6. For this latter compound, the finite-field
effects manifest for h � 2 × 10−2 that, as it can be seen in the h/ε scale, corresponds well to
h/ε � 0.1. The Prange approach under a conventional cutoff is in excellent agreement with the
experimental data up to h � 0.3 (h/ε � 3). These last results confirm, therefore, that the non-
local effects are not appreciable in this dirty alloy, with a moderate value of κ . In the two clean
superconductors, to explain the FD vanishing at h ≈ 1 (h/ε ≈ 10) one has to introduce a cutoff
which takes into account the magnetic confinement energy. As is clearly seen in the third horizontal
scale, for the two clean samples the FD vanishing occurs at a h amplitude which corresponds to
	H ≡ ξ(0)h−1/2 ≈ ξ0. The effects of magnetic confinement already manifest when 	H � 2ξ0.

principle applied to the superconducting wavefunction in [3]: the existence of a well defined
temperature, T C0, above which all the superconducting fluctuations vanish, is directly related
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Figure 6. Reduced-temperature dependence of the fluctuation-induced magnetization (over HT)
for various applied magnetic fields. The curves correspond to the zero-field limit under different
cutoff conditions: the conventional momentum or kinetic energy cutoff and the so-called total
energy cutoff, which includes the contribution associated with the shrinkage of the superconducting
wavefunction at high ε. They were obtained by using the Nb and Pb coherence length amplitudes
obtained in section 2, and with a cutoff constant of c = 0.5. As may be clearly seen, the zero-
field limit amplitude is not reached even at the lowest magnetic field amplitudes, suggesting that
non-local electrodynamic effects are quite important in these low-κ materials. However, for all
field amplitudes the FD vanishes at the critical temperature εC0 ≈ 0.5 predicted for clean BCS
superconductors when applying the uncertainty principle to the superconducting wavefunction.
The data points above ε ≈ 0.6 may be attributed to experimental noise. As illustrated in the lower
scale, such a reduced temperature corresponds to ξ(ε)/ξ0 of the order of 1.

to the limitations imposed by the uncertainty principle to the shrinkage of the superconducting
wavefunction when the temperature increases above TC . At low or moderate applied magnetic
fields, when h/ε � 1, such a limitation associated with the uncertainty principle may be
introduced through the superconducting coherence length in the zero-field limit, ξ(ε), which
even above TC0 cannot be smaller than ξ0, the Pippard coherence length amplitude [3]. Well
inside the finite field regime, when h/ε � 1, the characteristic length of the superconducting
wavefunction when H varies will be, instead of ξ(ε), of the order of the so-called magnetic
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Figure 7. Reduced-temperature dependence of the fluctuation-induced magnetization (over H T ) of
Nb and Pb for two constant reduced magnetic fields. These data are normalized by the corresponding
theoretical value in the zero-field limit at ε = 10−2. The curves correspond to the zero-field
theoretical approach under different cutoff conditions. As it may be clearly seen, these data almost
scale, for each superconductor, for similar h values and they are also strongly reduced from the zero-
field limit result. For comparison, some data from [5] corresponding to a higher-κ superconducting
alloy (Pb–18 at.% In) obtained with h = 2 × 10−2 are also shown. In this last case, at all reduced
temperatures the data are in excellent agreement with the zero-field limit approach. This last result
confirms, therefore, the absence at all reduced temperatures of non-local electrodynamic effects in
this dirty alloy. The data points above ε ≈ 0.6 may be attributed to experimental noise.

length, 	H ≡ ξ(0)h−1/2 [1, 2]. So, we will argue here that a natural extension of these
ideas to the high-field regime is, when h varies, to impose the limitations associated with the
uncertainty principle to the magnetic length. Therefore, it will be useful to first summarize
in this subsection some of the results of such calculations for the case of bulk (3D) isotropic
superconductors, which is the one well adapted to the compounds studied here. In this case,
the total energy cutoff for zero applied magnetic field may be written as

k2 + ξ−2(ε) � ξ−2
0 , (1)

where k is the wavevector of fluctuating modes. The left-hand side of equation (1) is the ‘total
energy’ of a fluctuating mode in units of h̄2/2m∗, where h̄ is the reduced Planck constant and
m∗ is the effective mass of the superconducting pairs. As explained in [3], this ‘total energy’ of
each fluctuating mode may be seen as the sum of the Heisenberg localization energy associated
with the shrinkage of the superconducting wavefunction when the temperature increases above
TC (the ξ−2(ε) term) and the conventional kinetic energy (the term proportional to k2). The
right-hand side in equation (1) may be seen as the Heisenberg localization energy associated
to the maximum shrinkage, at T = 0 K, of the superconducting wavefunction. This term is,
therefore, proportional to the inverse square of the Pippard coherence length amplitude, ξ0.

Near TC0, when ξ(ε) � ξ0, the quantum localization contribution to the total energy of
each fluctuating mode may be neglected, and equation (1) reduces then to the conventional
momentum or kinetic-energy cutoff [1, 2]:

k2 � cξ−2(0), (2)
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where instead of ξ0 we have used c−1/2ξ(0), where c is a cutoff amplitude, temperature
independent, close to 1. By also using ξ0 = c−1/2ξ(0) in equation (1) and assuming the
applicability at all reduced temperatures not too close to TC0 of the mean-field ε-dependence
of the superconducting coherence length, ξ(ε) = ξ(0)ε−1/2, one may see that the conventional
kinetic-energy and the total-energy cutoff are related through the substitution of c by c − ε.
Moreover, as stressed before, both cutoffs coincide near TC0, when ε 	 c. The conventional
momentum or kinetic-energy cutoff appears then as a particular case, the limit when ξ(ε) � ξ0,
of the total-energy cutoff. However, in spite of the simple relationship between both cutoff
approaches, first proposed in [4], their deep conceptual differences also lead to striking
differences in the high-ε behaviour of any quantity associated with the superconducting
fluctuations above TC , including the FD. These differences have been analysed in [3–5], but it
could be useful to stress some of them here. Note first, that the maximum kinetic energy of the
fluctuating Cooper pairs, Emax

kinetic , is temperature independent in the case of the conventional
kinetic-energy or momentum cutoff:

Emax
kinetic(momentum cutoff) = h̄2k2

max

2m∗ = h̄2

2m∗ξ2(0)
c. (3)

In contrast, under a total-energy cutoff, the maximum kinetic energy of the Cooper pairs is
temperature dependent. The corresponding Emax

kinetic may be directly obtained from equation (3)
by using c − ε instead of c (or from equation (1) and using again ξ0 = c−1/2ξ(0) and
ξ(ε) = ξ(0)ε−1/2) as:

Emax
kinetic(total-energy cutoff) = h̄2k2

max

2m∗ = h̄2

2m∗ξ2(0)
(c − ε), with ε � c, (4)

which is temperature dependent and becomes zero for ε � c. In other words, in contrast to the
conventional momentum or kinetic-energy cutoff which only eliminates, independent of the
temperature, the fluctuating modes with kinetic energy above ch̄2/2m∗ξ2(0), the total-energy
cutoff eliminates all the fluctuation modes at reduced temperatures equal to c or above. By
imposing a zero kinetic energy in equation (1), this reduced temperature, denoted εC0, is given
by:

ξ(εC0) = ξ0, (5)

i.e., εC0 = (ξ(0)/ξ0)
2 = c. As first argued in [3], equation (5) (which leads directly to the

existence of a well-defined reduced temperature above which all coherent Cooper pairs vanish)
may be seen as just a consequence of the limitations of the uncertainty principle to the shrinkage
of the superconducting wavefunction, which above TC0 also imposes the condition ξ(ε) � ξ0.
In other words, the collective behaviour of the Cooper pairs will be dominated at high reduced
temperatures by the Heisenberg localization energy. If, in addition, we assume the applicability
of the BCS relationship in the clean limit, ξ(0) = 0.74ξ0, then εC0

BCSclean = cBCSclean ≈ 0.5
[3–5]. Indeed, this value of c will also apply to the conventional momentum cutoff approach,
that appears as the limit when ε 	 1 of the total-energy cutoff.

It will also be useful to remember here, that the conventional GGL approach, including the
ε−1/2 dependence of ξ(ε), is formally valid only in the ε region εLG � ε 	 1, where εLG is the
so-called Levanyuk–Ginzburg reduced temperature [7]. Nevertheless, the conventional GGL
approximation was extended by different authors well beyond the ε 	 1 condition through
the introduction of a momentum or kinetic energy cutoff. These attempts, unsuccessful for
ε � 0.2, were discussed in [4, 5]. The short wavelength effects on the FD were already
addressed beyond the conventional momentum cutoff approach by different authors in the
case of the low-TC superconductors [8, 9, 12]. However, as already stressed in [3–5] and [13],
these approaches do not take into account the limitations imposed by the uncertainty principle
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to the superconducting wavefunction, whose effects are dominant at high ε. As a result, the
approaches proposed in [8, 9, 12] do not predict a sharp vanishing of the fluctuation effects at
any temperature at all (see also footnote 19 in [13]).

The FD in a bulk isotropic 3D superconductor in the finite field or Prange regime (h/ε � 1)
and neglecting the dynamic and non-local electrodynamic effects, has been calculated in [5] on
the grounds of the GGL approach regularized through the total energy cutoff condition given
by equation (1) as:

�M(ε, h, c)E = − kB T

πφ0ξ(0)

√
2h

∫ √
(c−ε)/2h

0
dx

[
c − ε

2h
−

(
c

2h
+ x2

)
ψ

(
1

2
+

c

2h
+ x2

)

+ ln �

(
1

2
+

c

2h
+ x2

)
+

(
ε

2h
+ x2

)

× ψ

(
1

2
+

ε

2h
+ x2

)
− ln �

(
1

2
+

ε

2h
+ x2

)]
, (6)

where � and ψ are, respectively, the gamma and digamma functions, φ0 is the magnetic
flux quantum and the dimensionless variable x is related to the parallel (to the applied field)
momentum, k‖, of the fluctuations through x = ξ(0)k‖/

√
h. Note that when ε 	 h and,

simultaneously, ε 	 c, equation (6) reduces to:

�M(h, c) = − kB T

πφ0ξ(0)

√
2h

∫ √
c/2h

0
dx

[
c

2h
−

(
c

2h
+ x2

)
ψ

(
1

2
+

c

2h
+ x2

)

+ ln �

(
1

2
+

c

2h
+ x2

)
+ x2ψ

(
1

2
+ x2

)
− ln �

(
1

2
+ x2

)]
. (7)

As already stressed in [5], the above expression for �M , which always applies at T = TC0,
may be used to easily relate the cutoff procedures we are summarizing here to the empirical
scaling field, HS, introduced by Gollub and co-workers to explain their pioneering FD results
in LTSC [6]. In these works, HS was defined as the magnetic field at which the scaled
magnetization,�Mφ

3/2
0 /kB T (µ0 H )1/2, decreases to one half of its saturation value at T = TC0

predicted by the Prange approach without a cutoff. Such a saturation value may be obtained by
applying h 	 c to equation (7),which leads to �Mφ

3/2
0 /kB T (µ0 H )1/2 ≈ 0.324. By using this

last value we obtain HS ≈ 0.5cHC2(0). Moreover, from (7) one may easily justify the empirical
proposal of Gollub and co-workers that the scaled magnetization,�Mφ3/2/kB T (µ0 H )1/2 is, at
T = TC0, a universal function of H/HS: the behaviour of �M(h, c) predicted by equation (7)
only depends at TC0 on c/h. It was also observed by Gollub and co-workers [6] and then
confirmed by other authors [8, 9, 12], that when the dynamic and non-local electrodynamic
effects are important, HS becomes dependent on the specific characteristics of each material
and much smaller than HC2(0). When described in terms of a cutoff parameter, these results
mean that c will also manifest this material dependence, and it will be much smaller than 1.
Such an entanglement of the non-local and short-wavelength effects will make any analysis at
TC0 of these short-wavelength effects ambiguous.

In the zero-field (or Schmidt and Schmid) limit, i.e., for h 	 ε, equation (6) reduces to

�M(ε, h, c)E = − kB T

6πφ0ξ(0)
h

(
arctan

√
(c − ε)/ε√
ε

− arctan
√

(c − ε)/c√
c

)
. (8)

As noted before, �M in the zero field limit, but under the conventional momentum or kinetic-
energy cutoff, may be directly obtained from equation (8) by just changing c to c + ε in the
above equation. This leads to

�M(ε, h, c)M = − kB T

6πφ0ξ(0)
h

(
arctan

√
c/ε√

ε
− arctan

√
c/(ε + c)√

ε + c

)
. (9)
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Both expressions for �M in the zero-field limit reduces to the conventional (without cutoff)
Schmidt and Schmid expression [14] when ε 	 c:

�M(ε, h) = − kB T

12φ0ξ(0)

h√
ε
. (10)

Although this paper is centred on the short wavelength fluctuations at high reduced
temperatures (ε � 0.1) and, simultaneously, low field amplitudes (h � 0.1), it will be useful
to briefly present here a crude analysis of these short wavelength effects on the FD at high
magnetic fields (h � 0.1) and, simultaneously, low reduced temperatures (ε � 0.1). In this
case the condition h/ε � 1 is quite well fulfilled and then, as we have already noted at
the beginning of this subsection, the shrinkage of the superconducting wavefunction when h
increases at constant ε may be parametrized through the magnetic length, 	H , as

ξ(h)ε = 1

b
	H = 1

b
ξ(0)h−1/2, (11)

where b is a dimensionless constant (i.e., both temperature and magnetic field independent)
expected to be of the order of 1. In this high-field regime the limitations imposed by
the indetermination principle to the shrinkage of the superconducting wavefunction may be
expressed as

ξ−2(h)ε < ξ−2
0 . (12)

In turn, this condition limits the energy of the Cooper pairs created by thermal fluctuations
through (in units of h̄2/2m∗)

Ekinetic + ξ−2(h) � ξ−2
0 , (13)

where we have already assumed ε 	 h and, therefore, the term in ξ−2(ε) may be neglected.
The term ξ−2(h) on the left-side of equation (13) may be seen as the Heisenberg localization
energy associated with the shrinkage of the superconducting wavefunction when h increases.
By taking into account ξ0 = c−1/2ξ(0) and equation (11), (13) may be written as

Ekinetic � ξ−2(0)(c − b2h). (14)

Therefore, the comparison of equation (14) with (1) and (2) suggests that one may crudely
take into account the limits imposed by the uncertainty principle to the magnetic confinement
of the superconducting fluctuations by just changing c to c − b2h in the phenomenological
GGL expressions under a momentum or a total energy (equation (6)) cutoff. In other words,
for 3D isotropic superconductors the FD at high reduced fields may be crudely approximated
by just changing c to c − b2h in equation (6). A more quantitative calculation of the FD taking
into account the limitations imposed by the uncertainty principle to the magnetic confinement
should start from the Ginzburg–Landau fluctuation free energy expression instead of directly
from equation (6). However, this procedure is substantially complicated for the relevant range
of high magnetic fields by the discreteness of the Landau-level spectrum of the superconducting
fluctuations. A way to circumvent this difficulty could be to use a penalization function
procedure similar to the one proposed by Patton and co-workers in [12]. Work is presently in
progress to elaborate such calculations.

4.2. Comparison with the experimental data

The solid curves in figures 6(a) and (b) correspond to the FD calculated on the grounds of
the GGL approach in the zero-field (or Schmidt and Schmid) limit and under a total-energy
cutoff (equation (8)). At least for the data points measured under the lowest field amplitudes
(h = 6 × 10−3 for Pb and 2 × 10−3 for Nb), such a zero-field approximation will be, in
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principle, well adapted to the measurements shown in these figures, even at the lowest reduced
temperatures. These solid curves were calculated by using in equation (8) the coherence
length values obtained in section 2 from magnetization measurements below TC0, and with
the cutoff constant c = 0.5, the value estimated in the precedent subsection for clean BCS
superconductors. One may see in these figures that for ε � 0.1 the theoretical FD amplitude
strongly disagrees, by at least a factor of two, with the experimental one, even for those data
measured under the lowest field amplitudes. As these last data are well in the zero field
limit (i.e., h/ε 	 1), these results provide a further confirmation that the FD in these two
clean and low-κ superconductors are strongly affected by non-local electrodynamic effects.
However, the central aspect shown by this comparison is that such a disagreement is strongly
mitigated at high reduced temperatures, when ε � 0.3. Moreover, this theoretical FD under
the total-energy cutoff accounts at a quantitative level for the vanishing of the measured FD
at ε ≈ 0.5. In other words, the comparison between the theory and the experiments presented
in figures 6(a) and (b) strongly suggests that even in presence of important non-local effects,
at high reduced temperatures the FD is still dominated by the Heisenberg localization energy,
which imposes a limit to the shrinkage of the superconducting wavefunction. To illustrate
when such a contribution becomes important, in figure 6 we have included ξ(ε)/ξ0 as a second
horizontal scale. To estimate ξ(ε)/ξ0 we have used the reduced temperature dependence of ξ(ε)

predicted by the mean-field approaches, ξ(ε) = ξ(0)ε−1/2, and the BCS relationship between
ξ(0) and ξ0 in the clean limit, ξ(0) = 0.74ξ0. We see that the FD is appreciably affected by
the quantum localization when ξ(ε) becomes of the order of ξ0 (for ξ0 � ξ(ε) � 2ξ0).

In figures 6(a) and (b) we also compare the experimental FD curves with the theoretical
results also in the zero field limit but under the conventional momentum or kinetic-energy
cutoff: the dashed curves in these figures correspond to equation (8) with the same ξ(0)

and c values as before. Whereas at low reduced temperatures, for ε � 0.1, both theoretical
approaches coincide, one may see that the differences become very important at high reduced
temperatures, for ε � 0.1. In particular, in contrast to the experimental results, the theoretical
FD under the conventional momentum cutoff does not vanish at any reduced temperature.
To further analyse the FD data obtained at low magnetic fields (h < 0.1), in figure 7 we
compare the FD observed in Nb and Pb with the one corresponding to a dirty Pb–18 at.% In
(Pb–In18%) alloy and with the theoretical FD calculated on the grounds of the zero-field GGL
approach under both cutoff conditions. These different data were divided by the corresponding
theoretical zero-field limit amplitudes at ε = 2 × 10−2. These theoretical amplitudes were
calculated by using equation (8), with c = 0.5. As may be clearly seen in this figure, the
data for the Pb–In dirty alloy (which has a higher κ-value than the Nb and Pb samples and
much less important non-local effects) are in excellent agreement with the predictions of the
total-energy cutoff approach, not only in what concerns to the FD vanishing at ε ≈ 0.5, but
also in the amplitude in the whole accessible reduced temperature range.

A first analysis of our FD results in the finite field regime is summarized in figures 5(a)
and (b). Here we present the FD h-dependence of the Nb, Pb and, for comparison, PbIn18%
samples, normalized to the theoretical low-field value under a cutoff (c = 0.5). As commented
above, only the data corresponding to the dirty Pb–In alloy reach the zero-field limit FD
amplitude. These last results, which were taken from [5], show that non-local effects are
unobservable in this dirty and relatively high-κ compound. As may be seen in the second
horizontal scale (where it is shown as h/ε), the finite field effects appear for h/ε � 2×10−1. In
this region the FD amplitude decreases considerably with respect to the low-field limiting value.
The dashed curve is the GGL finite-field approach under a conventional cutoff (equation (14)),
evaluated with c = 0.5. This approach accounts for the experimental data of PbIn18% up to
h/ε ≈ 6. The same can be said for the h dependence of the FD corresponding to the Nb and Pb
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samples. For the two clean superconductors the experimental FD vanishes at h ≈ 1 while the
conventional cutoff approach predicts a non-zero FD at all h values. This may be seen better
in the log–log representation of figure 5(b). As commented above, the FD vanishing at h ≈ 1
may be associated to the limits imposed by the uncertainty principle to the shrinkage of the
superconducting wavefunction induced by the application of a magnetic field. The solid curve
in figures 5(a) and (b) is the best fit of equation (6), with c − b2h instead of c, to the FD data of
the PbIn18% alloy up to h = 0.6. In doing that fit we imposed c = 0.5 and left b as the only
free parameter. As may be clearly seen, this approach is in excellent agreement with the FD
data of the PbIn18% alloy, and also with the behaviour of the two clean superconductors when
h → 1. The third horizontal scale in figure 5 indicates the magnetic length 	H relative to the
coherence length amplitude at T = 0 K. As is clearly seen, for the two clean samples the FD
vanishes just at the reduced magnetic field at which 	H ≈ ξ0. This seems to confirm the idea
that the superconducting fluctuations cannot be confined to lengths smaller than the coherence
length amplitude at T = 0 K, independent of the fact that the confinement is induced by high
reduced temperatures or by high reduced magnetic fields. However, in these clean samples
the FD is also strongly reduced by non-local electrodynamic effects when h increases [8, 9]
and, therefore, measurements at high reduced fields in dirty alloys, much less affected by
non-local effects [1, 2, 5, 9], will be of crucial importance to determine quantitatively the
value of the reduced field at which the superconducting fluctuations vanish (which, once the
non-local effects are suppressed, may be somewhat bigger than h = 1) and also to establish
the universality and the physical origin of the pair breaking mechanism when h → 1.

5. Conclusions

We have presented in this paper detailed measurements of the FD in two clean low-TC

superconductors: a type I superconductor (Pb) and a low-κ type II superconductor (Nb).
These measurements cover, to the best of our knowledge for the first time, both the high
reduced temperature regime and the high reduced magnetic field regime in clean and low-κ
superconductors. These results were then analysed in terms of the GGL approaches, extended
to the short wavelength regime by introducing a so-called total-energy cutoff, which takes
into account the quantum localization energy contribution associated with the shrinkage of
the superconducting wavefunction. Our results strongly suggest that despite the fact that in
these superconductors the FD is deeply affected by non-local electrodynamic effects, the short
wavelength fluctuations are still dominated by the uncertainty principle which imposes a limit
to the shrinkage, when ε or h increases, of the superconducting wavefunction. When compared
with our previous results in dirty low-TC and in clean high-TC superconductors, these results
suggest the universality of these quantum limits to the superconducting fluctuations when
ε → c ≈ 0.5. Measurements at high fields in dirty low-TC superconductors, less affected by
non-local effects, are now in progress to determine quantitatively the value of the reduced field
at which the superconducting fluctuations vanish and to try to establish the physical origin and
the universality of the non-conventional FD behaviour observed in the present work in clean
low-TC superconductors when h → 1.
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